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Steady state free thermal convection of liquid in a 
saturated permeable medium 
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SUMMARY 
The partial differential equations which describe steady flow 

of Auid in saturated homogeneous permeable solid material under 
non-isothermal conditions are stated. From these are derived the 
equations for flow of liquid (in particular, water) using suitable 
approximations and making use of empirical laws when necessary. 

It is then postulated that the only ' ponderomotive ' (i.e. mass- 
moving) forces present are those due to thermal expansion effects. 
Free convection results. An approximate solution of the equations 
is attempted for plane flow by means of classical perturbation 
methods, the temperature and stream-function variables being 
represented by power series in a convection parameter proportional 
to the Rayleigh number. 

A numerical example of the method, with boundary conditions 
based on a geothermal area at Wairakei, New Zealand, is given. 
The results show features which are in fair agreement with 
temperature measurements made in the area, and it appears that 
the convection parameter 9 is of the order of 10. 

1. INTRODUCTION 
In some situations associated with geothermal activity, it is possible 

that the flow of ground water of meteoric origin is influenced by convection 
currents due to differential heating. Heat is transported both by the 
convecting liquid and by thermal conduction through the saturated permeable 
earth. When an area of thermal activity is under investigation for its 
potentialities as a power source or for other reasons, the relation between 
ground-water movement and temperature distribution is of practical value, 
since the latter can be measured relatively easily by means of exploratory 
boreholes. 

The aim of the present study is to deduce approximate solutions for 
the flow field and temperature distribution when heat conduction and free 
convection of water in the permeable material are important. As would 
be expected, the problem is closely related to the problem of free convection 
in a viscous fluid (Goldstein 1938 ; Batchelor 1954), in which the appropriate 
convection parameter is the Rayleigh number, which, in the liquid case, is 
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274 R. A. Wooding 

Here To, TI are two reference temperatures on the absolute scale, a is the 
coefficient of linear thermal volume expansion of the liquid, g is the 
acceleration of gravity, d is a representative linear dimension, K is the thermal 
diffusivity of the liquid at temperature To, and v,, is its kinematic viscosity 
at To. 

When the liquid flows slowly through permeable material, motion is 
resisted according to the law of Darcy (1856), which states that the hydraulic 
gradient is proportional to the fluid velocity and to its viscosity, and is 
inversely proportional to the permeability. I n  the equation of motion, the 
Darcy resistance term replaces the Navier-Stokes viscosity term. The  
corresponding convection parameter q can be defined by 

where KJK,, is the ratio of the thermal conductivity of the solid-liquid 
mixture to the conductivity of the liquid, and K is, as before, the thermal 
diffusivity of the liquid. The  permeability of the solid medium is lz = NA2, 
A being a linear dimension proportional to the particle size, and N a 
dimensionless constant dependent upon the geometrical shape of the 
particles. 

Usually the ratio q/R is very small, as the permeable solid offers 
considerable resistance to the flow ; and large temperature gradients are 
necessary before appreciable heat transport by convection is observed. 
This suggests the use of series expansions of the dependent variables 
(temperature and stream function) in powers of the parameter r ) ,  analogous 
to the known technique of expansion in powers of the Rayleigh number 
as used in certain problems of free convection in fluids. The  method has 
limited usefulness in the latter case, since the series are convergent only 
for small values of R (Batchelor 1954). However, when the heat-transfer 
process is dominated by conduction, as in the case considered here, the 
expansion method should prove valid for a moderately large range of 
temperature differences. 

It will be assumed that the permeable solid medium is homogeneous 
and isotropic in its physical properties, including fluid permeability and 
thermal conductivity, both of which will be assumed to stay approximately 
constant with changes in temperature. 

Because of the wide temperature range employed, it is necessary to 
adopt certain empirical results in order to describe the density and viscosity 
of the liquid (water). As usual, the effect of pressure changes upon the 
density will be neglected. It remains to describe the effect of thermal 
volume expansion, which follows a non-linear law in the case of water. 
For convenience, the approximate empirical expression will be taken in 
the form of a polynomial relating density p and temperature T ("C), viz. 

p = 0*9969{1-3.17 x 10-4(~-25)-2-56 x 10-6(~-25)2}gm~m-3. (3) 
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Comparison with values of the density psat for saturated water tabulated 
by Dorsey (1940) shows that the density difference (p-0.9969) is given 
to an accuracy of 2% in the range 25" C to 250" C. For a lesser temperature 
range, a linear expansion law might prove to be adequate. 

Changes of liquid viscosity with pressure changes will be neglected 
(Dorsey 1940). However, the liquid viscosity is a rapidly-varying function 
of temperature which requires to be approximated analytically. The 
exponential expression due to Andrade (1934) suffices for most liquids, but 
it is not very tractable and water does not conform to that law. Consequently, 
for water the approximate empirical expression 

v = 0-332(7 + 13)-lcm2 sec-I (4) 

for the kinematic viscosity v, based on tables (Dorsey 1940), will be adopted. 
In the range 15°C to 225"C, the expression (4) is accurate to within 5%. 

2. STEADY-STATE DIFFERENTIAL EQUATIONS 

Let the temperature field be continuous throughout a given region of 
the fluid-saturated homogeneous permeable medium, and let steady-state 
conditions exist, so that all partial time derivatives are zero. 

As usual, the steady-state equation of continuity (Hubbert 1940) is 

v . (Pq) = 0, (5) 

where V is the Laplacian operator, p is the fluid density, and q is the flow 
vector expressed in units of fluid volume crossing unit area in unit time. 
(It is to be noted that q is related to the fluid particle velocity vector v 
by q = EV, where E is the porosity of the medium.) 

The linear law of motion due to Darcy (1856) can be written as 

1 i 

if p ,  v are the pressure and kinematic viscosity of the fluid, g is the vector 
of gravitational acceleration, and K is the permeability of the solid medium. 
The right-hand side of (6) consists of an inertial term which is negligible 
for the very low Reynolds numbers considered here. Although this term 
is retained in (6) in order that the conventional derivation of the energy 
equation (7) should be applicable, it will be neglected in subsequent sections 
of the paper., 

When non-isothermal conditions apply, both p and v will be one-valued 
continuous functions of the absolute temperature T.  The assumption will 
be made here that equation (6) still holds under these conditions. 

An equation for the flow of energy can be derived also by following 
closely the method for viscous fluids (Goldstein 1938, ch. 14), with the 
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equation (6)  replacing the usual Navier-Stokes equation. 
shown that the steady-state differential equation of energy transport is 

It is readily 

in which K, is the thermal conductivity of the fluid-saturated permeable 
medium (assumed constant hereafter), J is the mechanical equivalent of 
heat, and c is the specific heat per unit mass of the fluid at constant volume. 
Equation (7) differs from the energy equation of a viscous fluid only in the 
form of the viscous dissipation term and in the substitution of the flow 
vector q for the fluid particle velocity vector. 

3. APPROXIMATE EQUATIONS FOR LIQUID FLOW 

Now let the fluid be a liquid, assumed incompressible, whose density 
depends on temperature according to the law 

p = poi1 - a ( T -  Tn)-#XT- Tola) 
= po{l - a( Tl - To)8 - /3( TI - To)a02} 

in terms of the parameter 

Here Po, a, are constants, and To, Tl are two representative absolute 
temperatures (suggested by the empirical formula (3) for water). Therefore, 
by the equation of continuity (5),  one can define a solenoidal vector 

qo = q(1- a( T I  - To)8 - ,8( Tl - To)282} 

such that V a ( p q )  = Po V * = 0. (10) 
When converting to dimensionless variables, it is convenient to take 

a length unit d, and to write V (as before) for the new dimensionless 
Laplacian operator. Also, let 

g = gg' (11) 
where g' is a unit gravity vector in the dimensionless system, and let the 
dimensionless variables <, H ,  u be defined by 

( K B / ~ m ) <  = 90d/K, (12) 
(13) 

cr = v/vo, (14) 
(KrnIKw)VH = (VP/fo - g)k/(Kvo), 

where K = K,/poc is the thermal diffusivity of the liquid, and v,, is the 
value of v, both at T = T,,. From equation (2), 7 is given by 

For liquid flow through permeable material under moderately low 
pressures and at low velocities, as in near-surface ground-water movements, 
the work done by compression and viscous dissipation is assumed to be 
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small. It follows that the second and third terms on the left-hand side of 
equation (7) may be neglected. 

With the above definitions and approximations, it is found that sub- 
stitution of (8) to (15) into (5) to (7) leads to the following dimensionless 
differential equations for liquid flow : 

v .<  = 0, (16) 

(17) 

5. v~ = vw. (18) 

= .(el, (19) 

V H +  qg'(O + (/I/.)( Tl - To)02} + U< = 0, 

Equations (16), (17) and (lS), together with the relation 

constitute a system of six differentia1 equations to determine the six 
unknowns 0,  CJ, H and the three components of <. 

4. FREE CONVECTION WITH PLANE FLOW 

In this section it will be assumed that the predominant fluid motion is 
Therefore, it is convenient to eliminate 

Some simplification can be 
due to free thermal convection. 
the pressure terms by taking the curl of (17). 
introduced by assuming plane flow, for which one can write 

by virtue of (16), j being a dimensionless unit vector normal to the flow 
plane, and # a scalar stream function. Then, from (IS) and (17) respectively, 
the appropriate equations of energy and motion can be written as 

< =  - V x ( j # )  (20) 

Vae = - [VO, V#, j], (21) 

(22) V . (QW) = v ( l +  (2P/a)(T, - T,)O)lg', V@, jl, 
together with (19). 
a . b x c  = [a,b,c].) 

(Use has been made here of the vector notation 

From equation (4), it is clear that (19) can be written 

u(0) = (1 + a( TI - To)O}-l, (23) 

where a = l/(T0-260) (24) 
when the liquid is water. 

inhomogeneous mixed conditions 
On the boundary, it will be assumed, for the present, that 0 obeys the 

a O / &  + C, O = C,, (r = rs), (25) 
where r is a general position vector, Cl(rs)>, C2(r3) are real functions of 
the boundary position vector rS, and a/& signifies differentiation normal 
to the boundary. Further, it will be assumed that $ obeys the homogeneous 
conditions 

where, usually, either l/C3(e) = 0 (Dirichlet conditions) or C,(r") = 0 
(Neumann conditions). Solutions of (21), (22), using (23), with the 

a$/au+ c3+ = 0, (r = r"), (26) 
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boundary conditions (25) and (26), must be of such form that, as q tends 
to zero, # tends uniformly to zero everywhere, and 0 tends uniformly to 
the steady-state conduction solution. 

Although the stability of the flow patterns represented by these solutions 
is an important question, it is outside the scope of this discussion, which is 
restricted to certain specific solutions in the case of slow steady motion. 

The relative importance of convection and conduction in transporting 
heat is indicated by the magnitude of the parameter q. When ljl is large 
and the convection component predominates, a distinct boundary layer 
could exist. The usual approximations are then valid. However, a 
treatment along these lines is not needed here, because fairly small values 
of q are expected in most geophysical situations. 

When the latter condition that q is small applies, it is feasible to seek 
an approximate solution by means of perturbation expansions, as indicated 
previously. Let the dependent variables 0, a,!~ be expanded in the power series 

m 

m 

for which non-zero radii of convergence exist throughout the region in 
which a solution is required. Then, using (23), it is possible to expand u 
in the power series 

m 

t = O  
0 = Z: o*rlt, (29) 

where uo = {I + a ( ~ ,  - To)e0)-1 (30) 
and q/uo is equal to the cofactor of the (1, t)th element in the infinite triangular 
matrix 

in which use has been made of the Kronecker delta notation. 
When (27), (28) and (29) are substituted into (21) and (22)) and the 

successive coefficients of 1, q, q2... are equated to zero, the following sets 
of equations result : I 

for n 3 1. 
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For the boundary conditions, it is evident from the substitution of (27), 
(28) into (25), (26) that 

for all n 2 0 ,  and that 

for n 1. 
With the above specifications, one can then define a pair of Green’s 

functions F(rlrp), G(rJr,) (with position vectors r, r,) according to the 
differential equations 

W,Pu + C, e,, = C,, (r = @), (35) 

a#,,/au + C, #,& = 0, (r = rg), (36) 

V 2 F  = -4n5(r-rD), (37) 

(38) 
1 - V . (a, VG) = - 4n S(r - rp), 

0 0  

which make use of the notation of the Dirac delta function on the right-hand 
side. These equations have the homogeneous boundary conditions 

a F/au + C, F = 0, (r = rs), (39) 
aG/au+ C,G = 0, (r = rs), (40) 

so that the formal solution for 0, is a surface integral, and the formal solutions 
for the B,, 4% ( n  2 1) can be written down in terms of integrals over the 
volume V of saturated permeable material. These integrals are 

(C,/C,)VF.dS,,, 
4n 

and 8, = - j F{right-hand side of (33)) dVp 

#?& = - 1 G{right-hand side of (34)) dV’. 

(42) 

(43) 

1- 

1’ 

for n 3 1. Here dS,, dVp represent the surface and volume integration 
elements respectively. Comparison with (33) shows that the right-hand 
side of (42) involves solutions up to On_,, &, and comparison with (34) 
shows that the right-hand side of (43) involves coefficients up to On-l, #,-,. 
Hence it becomes possible in principle to solve the linear equations (32) 
to (34), or the corresponding integral equations (41) to (43)’ in appropriate 
successive order for 19,’ el, t,h2, 02..., each in terms of the preceding 
coefficients. 

5. CALCULATION OF PERTURBATiON COEFFICIENTS 

The  practicability of the above perturbation scheme is now tested’by 
means of a numerical example. A two-dimensional case is considered, 
and iterative (relaxation-method) solutions are obtained for the differential 
equations (32) to (34) expressed in finite-difference form. Fairly coarse 
nets are employed, and only the first few coefficients of the series, up to 
#4, B,, are calculated. 

The  choice of boundary conditions for the model has been influenced by 
a geological situation which appears to exist at one of the geothermally-active 
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areas of Wairakei, New Zealand. In figure 1, EG represents the ground 
surface and HAFG, DAB represent sections of a sheet of ignimbrite 
(an igneous formation) faulted along the line BF. Non-fractured ignimbrite 
has the property of very low permeability, so that fluid flow may be ignored 
in this material. Above the ignimbrite, and bounded by EFAD, are 
formations which possess appreciable fluid permeability. These formations 
appear to be saturated with meteoric water which, although at very high 
temperature in the deeper regions, is held in liquid form by the high pressure. 
Overlying this, and close to the surface EG, is a layer of mudstone which, 
in the calculations here, has been assumed to be impermeable. The region 
below BAH is believed to be a reservoir of trapped stream or superheated 
water at a temperature of about 250" C, and some of this fluid may escape 
through the fault fissure at A into the upper permeable layer. The permeable 
region above AD has been drilled to a depth of 1000 m without encountering 
ignimbrite, so that the existence of the ignimbrite continuation DAB is not 
definitely established. While the angle of dip of the fault BF is uncertain, 
it probably lies in the range 75-90", and has been taken to be 90" here. 

F 7 = 25OC E 
1 t MUDSTONE 

c 

J.  D 
7 = 250°C A 

H 

I C N I M B R I T E  

B 

Figure 1. Hypothetical geological structure based upon a geological structure 
believed to exist at Wairakei, New Zealand. 

Along BAH and EG, the temperatures are taken to be 250" C and 25" C 
respectively, giving To = 25 + 273 = 298" A, and Tl - To c 225" A. The 
length unit d is taken as equal to the spacing between AD and EF. For 
the scale of this example, d = O(10). Other values for parameters are 
obtained from equation (24), which gives a = 1/38('A)-l, and from a 
comparison of equations (3) and (8), which shows that tc = 3.17 x lo4(" A)-l, 
/3 = 2.56 x 10-6("A)--2. The boundary conditions are then as follows. 

O n E G :  O = O ;  
on HA, AB: 0 = 1; 
on BC, CE, G H :  ae/au = 0, where ajau signifies the derivative normal 

to the boundary ; 
on AD, DE, EF, FA: t,b = 0. 
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The condition ae/au = 0 on BC is only an approximation to the true boundary 
condition, Also, it will be noted that fluid flow into the region ADEF at A 
has been neglected. 

For the region ADEF, the equations (21) and (22)) when expressed in 
two-dimensional form, apply. However, for the regions ABCD, HAFG, 
$ can be assumed to be identically zero, and 0 obeys Laplace's equation. 

In  the absence of more precise information, the thermal conductivity 
has been assumed constant over the entire plane, so that at the boundaries 
FA,  A D  between differing media there is no discontinuity in 0 or in its first 
normal derivative. As there are second-derivative discontinuities in 8, the 
isotherms show changes in curvature on the boundaries FA,  AD. 

Figure 2 gives the numerical values obtained for the finite-difference 
solutions for 8,) O1...64, and figure 3 gives the values for $1...+4. In the 
calculation of these solutions, several approximations were involved, as 
follows. 

(a) A boundary singularity in B exists at the point A, and partial com- 
pensation for its effect was introduced (Woods 1953) during the calculation 
of B,,. As the modification was not large, the effect of the singularity was 
ignored during the calculation of higher &coefficients. 

F KEY F 
lo3*, z o 

~ lo:*. = 0 , 10 Q3 = 0 

I 

~ IOey, = 0 

-391 -49  -45 -36 -26 - IS - I t  -? 
-31 -3s -21 -7 I 4 4 3 

- 2  5 5 4 L I - 19 
- 5  3 2 0 -2 - 2  - 2  - I  

I I *  -; - 4  - 2  

l3  -2  - 4  - 2  

-105 -119 -99 -73 - 5 1  - 3 4  -22 - 1 %  
-87. -79 - 3 5  - 5  9 1.7 10 7 

7 3 I - st - 24 I 5  
- 8  I4 I 2  - 4  

-161 -156 -1Ib -80 -52 -34 -21 -12 
-117 - 7 4 1  -17 1 1  1s 16 12 B 

2 I - 5 3  8 i  30 248 
0,  - 7  2 0  4 % '  2 1 ,  

I I 

L 

-3  
2 
0 

- I  

- 6  
3 
0 

- 1  

- 5  
4 
0 

- I  

Figure 3. Numerical values obtained for the coefficients #%, &, #4 respectively, 
tabulated for each point of the relaxation net. 

(b)  On the boundaries F A  and AD,  the equations obeyed by the 
coefficients 0, (n 1) undergo a transition from (33) to Laplace's equation. 
The treatment of this type of singularity in a finite-difference solution 
involves taking half the contribution due to the right-hand side of (33) at 
mesh points lying on the discontinuity, and in refining the net close to the 
discontinuity. Since the refinement of the net has been omitted for this 
example, errors of approximation must be expected in the vicinity of the 
boundaries FA,  AD. 

(c )  The calculation of $$ and +4 from (34) is approximate in that the 
terms under the first double-summation sign (which are of order n) on the 
right-hand side have been neglected in comparison with the other right-hand 
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terms (which are of order n- 1). The resultant errors introduced are 
negligible in the regions of highest temperature, rising to a few percent 
in the cold regions where u is large and i,h is small. 

Owing to the extremely high temperature differences applying on the 
boundaries, the magnitude of the coefficients does not decrease very rapidly, 
and it is necessary to consider the number of terms required to give reasonable 
accuracy, for a given value of the parameter 7. From figures 2 and 3, 
there are indications that the sequences (0,) and (I,IJ~) are oscillatory, whence 
a reasonably satisfactory estimate should be obtainable by choosing a 
suitable point to truncate each series, e.g. after a change in sign of the last 
coefficient. 

Figure 4 is plotted from the finite-difference solution for O,, and corre- 
sponds to the temperature field due to conduction alone. 

Figure 4. Field of the temperature parameter O,, corresponding to the conduction 
field in the geothermal model. 

In figure 5, a value of 7 = 7 has been chosen to illustrate the alteration 
in the @-field with convection present, the series being taken as far as the 
term in q3. (The effect of adding the term in q4 is shown by the broken 
lines.) Three departures from the conduction case may be noted: (1) a 
crowding of the isotherms towards point A from the right, corresponding 
to a decrease of temperature in the vicinity of A D ;  (2) an increase of 
temperature in the vicinity of FA ; and (3) a marked horizontal temperature 
gradient as boundary AD is approached from above. If q were increased, 
these phenomena would be intensified, and the isotherms would tend to 
form a ' mushroom ' situated to the right of the boundary FA. 

Phenomena (1) and (2) have been observed in the data obtained from 
temperature measurements in boreholes at the Wairakei geothermal area, 
and comparison of the temperature gradients with theoretical results 
indicates that However, (3) has not been observed, so that, 
although the presence of a convection process appears highly probable, 

= O(10). 



284 R. A. Wooding 

there is no confirmation of the existence of the ignimbrite sheet DAB. 
There are indications, also, that the mudstone layer EG has appreciable 
permeability, perhaps due in part to erosion by surface streams. 

&=I0 

Figure 5. Field of the approximate temperature parameter 0 defined by 

e = eo+el 7+0~171+0~73, 

for 7 = 7. 
field when a further term (8,173 is added to the series. 

The broken-line isotherms indicate the modifications to the 

A D' 
Figure 6. Field of the approximate stream function t,4 defined by 

$ = +177+t,48 772+$h7?3, 
for 7 = 7. 
when a further term (#4q4) is added to the series. 

The broken-line isopleths indicate the modifications to the field 

In figure 6 are plotted values of the series for the stream function $, 
up to the v3 term (full lines) and the q4 term (broken lines), for r )  = 7. 
Modification by the fourth-order term is in the direction of decreasing #, 
which follows from the sign change in the higher coefficients. It will be 
noted that the region of main circulation is concentrated near the corner A,  
where a large temperature gradient exists, and where the high temperature 
results in a low fluid viscosity. 
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An estimate of the heat output Q at the surface EG (per unit width of 
boundary parallel to the axis of convection) for the boundary conditions 
given is expressible in dimensionless form in terms of the Nusselt number N :  

where dl represents 
N is a function of r ] ,  

= I (aO/au) dl, (44) 
N =  Q 

Km(T1- To) 
an element of length of the boundary EG. 
and it is found that 

Clearly, 

N(q)/N(O) = 1 - 0-52 x lOP3r) +4*25 x 10"q2 + 5.05 x 1 0 - 5 ~ ~  + 2.76 x lF6q4,  

(45) 
N(0) being the Nusselt number for conduction alone, with the given 
boundary temperatures. When q = 7, N(q)/N(O) = 1.04. 

For the boundary conditions of this example, it is evident that the 
chosen value of 7 for the parameter r )  tests the perturbation method 
practically to the limit of its usefulness. A low maximum value of r] is to 
be expected, since the temperature difference (TI  - To = 225" A) is so large. 
Near 250°C, the density of saturated water is about 0-8 of the value at 
25"C, and the kinematic viscosity is less than 4 of the value at 25°C. 
Nevertheless, these extreme conditions are known to exist in at least one 
geothermal area, and indications are that the value of r ]  appropriate to the 
area does not greatly exceed the value chosen in this example. 
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